DECOUPLING CAPACITOR DESIGN ISSUES IN 90NM CMOS by

نویسنده

  • XIONGFEI MENG
چکیده

On-chip decoupling capacitors (decaps) are widely used to reduce power supply noise. Typically, designs use NMOS decaps between standard-cell blocks and NMOS+PMOS decaps within the blocks. Starting at the 90nm CMOS technology node, the traditional decap designs may no longer be suitable due to increased concerns regarding thin-oxide gate leakage and electrostatic discharge (ESD) reliability. This thesis investigates new decap design approaches that address gate leakage and ESD. A cross-coupled design is described that has been recently introduced by cell library developers to handle ESD problems. Three modifications of the cross-coupled design are introduced here and the tradeoffs among transient response, gate leakage and ESD performance are analyzed. The modifications offer designers greater flexibility in decoupling capacitor design for 90nm and below. To improve the power-grid noise reduction capability in the areas between blocks, two versions of a switched-decap design are proposed. One provides excellent decap performance but consumes large power, whereas the other saves power but suffers from excessive delay. A novel low-power voltage regulator using switched decaps is proposed to better balance performance and power consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circuits and algorithms for pipelined ADCs in scaled CMOS technologies

CMOS technology scaling is creating significant issues for analog circuit design. For example, reduced signal swing and device gain make it increasingly difficult to realize high-speed, high-gain feedback loops traditionally used in switched capacitor circuits. This research involves two complementary methods for addressing scaling issues. First is the development of two blind digital calibrati...

متن کامل

Design and Analysis of an 8T Read Decoupled Dual Port SRAM Cell for Low Power High Speed Applications

Speed, power consumption and area, are some of the most important factors of concern in modern day memory design. As we move towards Deep Sub-Micron Technologies, the problems of leakage current, noise and cell stability due to physical parameter variation becomes more pronounced. In this paper we have designed an 8T Read Decoupled Dual Port SRAM Cell with Dual Threshold Voltage and characteriz...

متن کامل

Design of power-efficient adiabatic charging circuit in 0.18μm CMOS technology

In energy supply applications for low-power sensors, there are cases where energy should be transmitted from a low-power battery to an output stage load capacitor. This paper presents an adiabatic charging circuit with a parallel switches approach that connects to a low-power battery and charges the load capacitor using a buck converter which operates in continuous conduction mode (CCM). A gate...

متن کامل

OF PACKAGE I / O LEAD ELECTRICAL PARASITICS FOR DIFFERENT PACKAGES Electrical Parameters Wire - bonding Package Type

This paper is concerned with the analysis and optimization of the ground bounce in digital CMOS circuits. First, an analytical method for calculating the ground bounce is presented. The proposed method relies on accurate models of the short-channel MOS device and the chip-package interface parasitics. Next the effect of ground bounce on the propagation delay and the optimum tapering factor of a...

متن کامل

An Improved Active Decoupling Capacitor for “Hot-Spot” Supply Noise Reduction in ASIC Designs

On-chip decoupling capacitors (decaps) are widely used to reduce power supply noise by placing them at the appropriate locations on the chip between blocks. While passive decaps can provide a certain degree of protection against IR drop, if a problem is found after the physical design is completed, it is difficult to implement a quick fix to the problem. In this paper, we investigate the use of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006